这类软件主要用于更专业的数据分析挖掘工作,尤其是在银行、金融、保险业。
SPSS、SAS都是用于统计分析,围绕统计学知识的一些基本应用,包括描述统计,方差分析,因子分析,主成分分析,基本的回归,分布的检验等等。SPSS用于市场研究较多,SAS银行金融和医学统计较多,有一些难度。
R语言像是综合性较强的一类数据分析工具,集统计分析、数据挖掘,数据可视化。
展开来,讲讲数据分析~
这些数据分析工具的使用还是看需求,每个企业应用的选择和方式都不同。数据分析的概念很广,站在IT的角度,实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层——数据报表层——数据分析层——数据展现层
第二维度:用户级——部门级——企业级——BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;
DB2,Oracle数据库都是大型数据库,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表/BI层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
本人从事财务工作多年,月度、年度的财务分析报告的撰写,是日常性的工作,用的最多的工具就是EXCEL图表。
要写好财务分析,我觉得有两点要做好:
- 财务数据必须与业务相结合,这样,财务分析才有生命力;
- 要将专业的财务数据转化通俗易懂的层面上,也就是去专业化,最好是转化为可视性图表。
总之,要让非财务专业的人,能迅速看明白你的分析结果,并且可视性要强。
下面,可以举几个例子:
数据分析最常用的软件一般有Excel、mysql和Tableau。
- Excel大家都用的比较多,对日常工作来说是不可或缺的存在,其实它的数据分析功能也很厉害。
- mysql是关系型数据库,sql语言可以很好地对数据库进行操作管理,进而进行数据分析。
- Tableau是专业的可视化软件,在线使用很方便。
初学者应该先从SQL开始学起,SQL是所有数据方向的必备技能,也是比较容易学的技能。